--- base_model: four-two-labs/tinyllama-moe-base tags: - trl - orpo - generated_from_trainer model-index: - name: orpo results: [] --- # tinyllama-moe-base-mix-orpo This model is a fine-tuned version of [four-two-labs/tinyllama-moe-base](https://huggingface.co/four-two-labs/tinyllama-moe-base) on the `see code` dataset. It achieves the following results on the evaluation set: - Loss: 1.1757 - Rewards/chosen: -0.1708 - Rewards/rejected: -0.1682 - Rewards/accuracies: 0.5003 - Rewards/margins: -0.0027 - Logps/rejected: -1.6818 - Logps/chosen: -1.7085 - Logits/rejected: -2.6114 - Logits/chosen: -2.6139 - Nll Loss: 1.0859 - Log Odds Ratio: -0.8989 - Log Odds Chosen: -0.1073 ## Model description More information needed ## Training and evaluation data ```python from datasets import load_dataset from datasets import interleave_datasets def format_chat_template(row): for key in ['prompt', 'chosen', 'rejected']: row[key] = tokenizer.apply_chat_template(row[key], tokenize=False) return row dataset = ( interleave_datasets([ ( interleave_datasets( load_dataset( 'four-two-labs/orpo-dpo-mix-40k-multilang-fixed', token=hf_token, ) .values() ) .select_columns(['prompt', 'chosen', 'rejected']) ), ( load_dataset( 'four-two-labs/translations-5M-DPO', split='train', token=hf_token, ) .shuffle(42) .select(range(250_000)) .select_columns(['prompt', 'chosen', 'rejected']) ), ( load_dataset( 'four-two-labs/ultrafeedback_binarized-fixed', split='train_prefs', token=hf_token, ) .select_columns(['prompt', 'chosen', 'rejected']) ), ]) .shuffle(seed=42) #.select(range(1000)) .map(format_chat_template, num_proc=32) .train_test_split(test_size=0.01) ) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.1835 | 0.6001 | 2270 | 1.1764 | -0.1711 | -0.1684 | 0.4976 | -0.0027 | -1.6838 | -1.7106 | -2.6416 | -2.6430 | 1.0866 | -0.8991 | -0.1073 | | 1.1494 | 1.2002 | 4540 | 1.1757 | -0.1709 | -0.1682 | 0.5003 | -0.0026 | -1.6820 | -1.7085 | -2.5529 | -2.5573 | 1.0860 | -0.8988 | -0.1070 | | 1.233 | 1.8003 | 6810 | 1.1757 | -0.1709 | -0.1682 | 0.4993 | -0.0027 | -1.6819 | -1.7086 | -2.5859 | -2.5892 | 1.0859 | -0.8989 | -0.1073 | | 1.2344 | 2.4004 | 9080 | 1.1757 | -0.1708 | -0.1682 | 0.5003 | -0.0027 | -1.6818 | -1.7085 | -2.6114 | -2.6139 | 1.0859 | -0.8989 | -0.1073 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1