--- license: openrail language: - en tags: - stable-diffusion - stable-diffusion-diffusers - stable-diffusion-xl - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 datasets: - frank-chieng/chinese_architecture_siheyuan library_name: diffusers inference: parameter: negative_prompt: widget: - text: >- siheyuan, chinese traditional architecture, perfectly shaded, morning lighting, medium closeup, mystical setting, during the day example_title: example1 siheyuan - text: >- siheyuan, chinese modern architecture, perfectly shaded, night lighting, medium closeup, mystical setting, during the day example_title: example2 siheyuan pipeline_tag: text-to-image --- ## Overview **Architecture Lora Chinese Style** is a lora training model with sdxl1.0 base model, latent text-to-image diffusion model. The model has been fine-tuned using a learning rate of `1e-5` over 3000 total steps with a batch size of 4 on a curated dataset of superior-quality chinese building style images. This model is derived from Stable Diffusion XL 1.0. - Use it with 🧨 [`diffusers`](https://huggingface.co/docs/diffusers/index) - Use it with the [`ComfyUI`](https://github.com/comfyanonymous/ComfyUI) **(recommended)** - ### Model Description - **Developed by:** [FrankChieng](https://github.com/frankchieng) - **Model type:** Diffusion-based text-to-image generative model - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Finetuned from model [optional]:** [Stable Diffusion XL 1.0 base](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
## How to Use: - Download `Lora model` [here](https://huggingface.co/frank-chieng/sdxl_lora_architecture_siheyuan/resolve/main/sdxl_lora_architecture_siheyuan.safetensors), the model is in `.safetensors` format. - You need to use include siheyuan prompt in natural language, then you will get realistic result image - You can use any generic negative prompt or use the following suggested negative prompt to guide the model towards high aesthetic generationse: ``` low quality, low resolution,watermark, mark, nsfw, lowres, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark ``` - And, the following should also be prepended to prompts to get high aesthetic results: ``` masterpiece, best quality ```
## 🧨 Diffusers Make sure to upgrade diffusers to >= 0.18.2: ``` pip install diffusers --upgrade ``` In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` Running the pipeline (if you don't swap the scheduler it will run with the default **EulerDiscreteScheduler** in this example we are swapping it to **EulerAncestralDiscreteScheduler**: ```py pip install -q --upgrade diffusers invisible_watermark transformers accelerate safetensors pip install huggingface_hub from huggingface_hub import notebook_login notebook_login() import torch from torch import autocast from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" lora_model = "frank-chieng/sdxl_lora_architecture_siheyuan" pipe = StableDiffusionXLPipeline.from_pretrained( base_model_id, torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(lora_model, weight_name="sdxl_lora_architecture_siheyuan.safetensors") pipe.to('cuda') prompt = "siheyuan, chinese modern architecture, perfectly shaded, night lighting, medium closeup, mystical setting, during the day" negative_prompt = "watermark" image = pipe( prompt, negative_prompt=negative_prompt, width=1024, height=1024, guidance_scale=7, target_size=(1024,1024), original_size=(4096,4096), num_inference_steps=28 ).images[0] image.save("chinese_siheyuan.png") ```
## Limitation This model inherit Stable Diffusion XL 1.0 [limitation](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0#limitations)