--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - fsicoli/cv16-fleurs metrics: - wer model-index: - name: whisper-medium-pt-cv16-fleurs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fsicoli/cv16-fleurs default type: fsicoli/cv16-fleurs args: default metrics: - name: Wer type: wer value: 0.09421927983206846 --- # whisper-medium-pt-cv16-fleurs This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv16-fleurs default dataset. It achieves the following results on the evaluation set: - Loss: 0.1409 - Wer: 0.0942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2552 | 0.93 | 1000 | 0.2200 | 0.1220 | | 0.1928 | 1.87 | 2000 | 0.1645 | 0.1062 | | 0.1646 | 2.8 | 3000 | 0.1508 | 0.1016 | | 0.1333 | 3.74 | 4000 | 0.1438 | 0.0970 | | 0.1027 | 4.67 | 5000 | 0.1409 | 0.0942 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1 - Datasets 2.16.1 - Tokenizers 0.15.2