--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - fsicoli/cv19-fleurs metrics: - wer model-index: - name: whisper-medium-pt-cv19-fleurs2-lr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fsicoli/cv19-fleurs default type: fsicoli/cv19-fleurs args: default metrics: - name: Wer type: wer value: 0.0953 --- # whisper-medium-pt-cv19-fleurs2-lr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv19-fleurs default dataset in Portuguese. It achieves the following results on the evaluation set: - Loss: 0.2099 - Wer: 0.0953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.25e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 0.0697 | 2.2883 | 5000 | 0.1620 | 0.1027 | | 0.0272 | 4.5767 | 10000 | 0.1833 | 0.1038 | | 0.0125 | 6.8650 | 15000 | 0.2036 | 0.0991 | | 0.0057 | 9.1533 | 20000 | 0.2092 | 0.0983 | | 0.0043 | 11.4416 | 25000 | 0.2099 | 0.0953 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.19.1