--- language: en license: apache-2.0 tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: the nerves,blood vessels, and glands are located in which layer of the skin - text: Where would you put refuse if you do not want it to exist any more? - text: Obesity can cause resistance to which hormone? - text: Referees - text: where does the water at niagra falls come from metrics: - '0' - '1' - accuracy - macro avg - weighted avg pipeline_tag: text-classification library_name: setfit inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 on Health Information Needs results: - task: type: text-classification name: Text Classification dataset: name: Health Information Needs type: unknown split: test metrics: - type: '0' value: precision: 0.37465309898242366 recall: 0.989413680781759 f1-score: 0.5435025721315142 support: 1228.0 name: '0' - type: '1' value: precision: 0.9940962761126249 recall: 0.5190894000474271 f1-score: 0.6820377005764138 support: 4217.0 name: '1' - type: accuracy value: 0.6251606978879706 name: Accuracy - type: macro avg value: precision: 0.6843746875475243 recall: 0.7542515404145931 f1-score: 0.6127701363539639 support: 5445.0 name: Macro Avg - type: weighted avg value: precision: 0.8543944907102582 recall: 0.6251606978879706 f1-score: 0.6507941491107871 support: 5445.0 name: Weighted Avg --- # SetFit with BAAI/bge-small-en-v1.5 on Health Information Needs This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Language:** en - **License:** apache-2.0 ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Evaluation ### Metrics | Label | 0 | 1 | Accuracy | Macro Avg | Weighted Avg | |:--------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:---------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------| | **all** | {'precision': 0.37465309898242366, 'recall': 0.989413680781759, 'f1-score': 0.5435025721315142, 'support': 1228.0} | {'precision': 0.9940962761126249, 'recall': 0.5190894000474271, 'f1-score': 0.6820377005764138, 'support': 4217.0} | 0.6252 | {'precision': 0.6843746875475243, 'recall': 0.7542515404145931, 'f1-score': 0.6127701363539639, 'support': 5445.0} | {'precision': 0.8543944907102582, 'recall': 0.6251606978879706, 'f1-score': 0.6507941491107871, 'support': 5445.0} | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("fuhakiem/hin-v001-trainer") # Run inference preds = model("Referees") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 7.3 | 15 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 5 | | 1 | 5 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.5 | 1 | 0.1957 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu124 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```