# pytorch_diffusion + derived encoder decoder import math import numpy as np import tqdm import torch import torch.nn as nn from diffusers import DiffusionPipeline from .modeling_vae import AutoencoderKL from .configuration_ldmbert import LDMBertConfig from .modeling_ldmbert import LDMBertModel class LatentDiffusion(DiffusionPipeline): def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler): super().__init__() self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, noise_scheduler=noise_scheduler) @torch.no_grad() def __call__(self, prompt, batch_size=1, generator=None, torch_device=None, eta=0.0, guidance_scale=1.0, num_inference_steps=50): # eta corresponds to η in paper and should be between [0, 1] if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" self.unet.to(torch_device) self.vqvae.to(torch_device) self.bert.to(torch_device) # get unconditional embeddings for classifier free guidence if guidance_scale != 1.0: uncond_input = self.tokenizer([""], padding="max_length", max_length=77, return_tensors='pt').to(torch_device) uncond_embeddings = self.bert(uncond_input.input_ids)[0] # get text embedding text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device) text_embedding = self.bert(text_input.input_ids)[0] num_trained_timesteps = self.noise_scheduler.num_timesteps inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) image = self.noise_scheduler.sample_noise( (batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size), device=torch_device, generator=generator, ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation ( -> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_image -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_image_direction -> "direction pointingc to x_t" # - pred_prev_image -> "x_t-1" for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): # guidance_scale of 1 means no guidance if guidance_scale == 1.0: image_in = image context = text_embedding timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device) else: # for classifier free guidance, we need to do two forward passes # here we concanate embedding and unconditioned embedding in a single batch # to avoid doing two forward passes image_in = torch.cat([image] * 2) context = torch.cat([uncond_embeddings, text_embedding]) timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device) # 1. predict noise residual pred_noise_t = self.unet(image_in, timesteps, context=context) # perform guidance if guidance_scale != 1.0: pred_noise_t_uncond, pred_noise_t = pred_noise_t.chunk(2) pred_noise_t = pred_noise_t_uncond + guidance_scale * (pred_noise_t - pred_noise_t_uncond) # 2. predict previous mean of image x_t-1 pred_prev_image = self.noise_scheduler.compute_prev_image_step(pred_noise_t, image, t, num_inference_steps, eta) # 3. optionally sample variance variance = 0 if eta > 0: noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator) variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise # 4. set current image to prev_image: x_t -> x_t-1 image = pred_prev_image + variance # scale and decode image with vae image = 1 / 0.18215 * image image = self.vqvae.decode(image) image = torch.clamp((image+1.0)/2.0, min=0.0, max=1.0) return image