--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - edinburghcstr/ami metrics: - wer model-index: - name: Whisper Small - FutureProofGlitch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: AMI Meeting Corpus type: edinburghcstr/ami config: ihm split: test args: ihm metrics: - name: Wer type: wer value: 19.383175582260982 --- # Whisper Small - FutureProofGlitch This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the AMI Meeting Corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.4325 - Wer Ortho: 19.5838 - Wer: 19.3832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.2735 | 0.61 | 500 | 0.3324 | 21.5310 | 21.2081 | | 0.1235 | 1.22 | 1000 | 0.3473 | 19.6819 | 19.4991 | | 0.1317 | 1.83 | 1500 | 0.3342 | 19.0920 | 18.7929 | | 0.0647 | 2.44 | 2000 | 0.3671 | 22.8615 | 22.6949 | | 0.0294 | 3.05 | 2500 | 0.3842 | 18.5566 | 18.4101 | | 0.0534 | 3.66 | 3000 | 0.4044 | 20.8094 | 20.5998 | | 0.0366 | 4.27 | 3500 | 0.4277 | 20.2686 | 20.1372 | | 0.0328 | 4.88 | 4000 | 0.4325 | 19.5838 | 19.3832 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2