--- license: apache-2.0 base_model: microsoft/resnet-18 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: font-identifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9102040816326531 --- # font-identifier This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3980 - Accuracy: 0.9102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9105 | 0.98 | 30 | 3.7931 | 0.0551 | | 3.2821 | 1.98 | 61 | 2.9878 | 0.2755 | | 2.4752 | 2.99 | 92 | 2.1760 | 0.4408 | | 1.9958 | 4.0 | 123 | 1.6964 | 0.5327 | | 1.6609 | 4.98 | 153 | 1.4001 | 0.6265 | | 1.4328 | 5.98 | 184 | 1.1766 | 0.6796 | | 1.2677 | 6.99 | 215 | 1.0262 | 0.7163 | | 1.1174 | 8.0 | 246 | 0.8758 | 0.7653 | | 1.0564 | 8.98 | 276 | 0.7675 | 0.8184 | | 0.9003 | 9.98 | 307 | 0.7161 | 0.8286 | | 0.8711 | 10.99 | 338 | 0.6461 | 0.8224 | | 0.7954 | 12.0 | 369 | 0.5683 | 0.8653 | | 0.743 | 12.98 | 399 | 0.5438 | 0.8510 | | 0.6914 | 13.98 | 430 | 0.5129 | 0.8878 | | 0.6714 | 14.99 | 461 | 0.4418 | 0.8857 | | 0.663 | 16.0 | 492 | 0.4555 | 0.8694 | | 0.6326 | 16.98 | 522 | 0.4746 | 0.8755 | | 0.5831 | 17.98 | 553 | 0.4263 | 0.8776 | | 0.571 | 18.99 | 584 | 0.4305 | 0.8857 | | 0.6543 | 19.51 | 600 | 0.3980 | 0.9102 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.14.1