--- license: apache-2.0 base_model: microsoft/resnet-18 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: font-identifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9040816326530612 --- # font-identifier This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3626 - Accuracy: 0.9041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.929 | 0.98 | 30 | 3.8215 | 0.0429 | | 3.2162 | 1.98 | 61 | 2.9144 | 0.2816 | | 2.4387 | 2.99 | 92 | 2.1019 | 0.4776 | | 1.9404 | 4.0 | 123 | 1.5607 | 0.6041 | | 1.5756 | 4.98 | 153 | 1.3012 | 0.6449 | | 1.3374 | 5.98 | 184 | 1.0699 | 0.7102 | | 1.1912 | 6.99 | 215 | 0.9145 | 0.7633 | | 1.0716 | 8.0 | 246 | 0.7864 | 0.7898 | | 0.9751 | 8.98 | 276 | 0.6894 | 0.8204 | | 0.8211 | 9.98 | 307 | 0.6256 | 0.8510 | | 0.8254 | 10.99 | 338 | 0.5563 | 0.8633 | | 0.742 | 12.0 | 369 | 0.5149 | 0.8694 | | 0.6949 | 12.98 | 399 | 0.4625 | 0.8878 | | 0.6401 | 13.98 | 430 | 0.4799 | 0.8857 | | 0.6304 | 14.99 | 461 | 0.3970 | 0.8980 | | 0.6239 | 16.0 | 492 | 0.4016 | 0.9 | | 0.5911 | 16.98 | 522 | 0.4271 | 0.8755 | | 0.5764 | 17.98 | 553 | 0.3922 | 0.9 | | 0.5461 | 18.99 | 584 | 0.3750 | 0.9 | | 0.6236 | 19.51 | 600 | 0.3626 | 0.9041 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.14.1