--- license: apache-2.0 tags: - moe - mergekit - merge - chinese - arabic - english - multilingual - german - french - jondurbin/bagel-dpo-34b-v0.2 - jondurbin/nontoxic-bagel-34b-v0.2 --- # MetaModel_moe_yix2 This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models: * [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2) * [jondurbin/nontoxic-bagel-34b-v0.2](https://huggingface.co/jondurbin/nontoxic-bagel-34b-v0.2) ## 🧩 Configuration ```yamlbase_model: jondurbin/bagel-dpo-34b-v0.2 dtype: bfloat16 experts: - positive_prompts: - chat - assistant - tell me - explain source_model: jondurbin/bagel-dpo-34b-v0.2 - positive_prompts: - chat - assistant - tell me - explain source_model: jondurbin/nontoxic-bagel-34b-v0.2 gate_mode: hidden ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gagan3012/MetaModel_moe_yix2" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```