--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-tiny-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.8083060109289617 - name: Recall type: recall value: 0.8273856136033113 - name: F1 type: f1 value: 0.8177345348001547 - name: Accuracy type: accuracy value: 0.9597597979252387 --- # bert-tiny-finetuned-ner This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Precision: 0.8083 - Recall: 0.8274 - F1: 0.8177 - Accuracy: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0355 | 1.0 | 878 | 0.1692 | 0.8072 | 0.8248 | 0.8159 | 0.9594 | | 0.0411 | 2.0 | 1756 | 0.1678 | 0.8101 | 0.8277 | 0.8188 | 0.9600 | | 0.0386 | 3.0 | 2634 | 0.1697 | 0.8103 | 0.8269 | 0.8186 | 0.9599 | | 0.0373 | 4.0 | 3512 | 0.1694 | 0.8106 | 0.8263 | 0.8183 | 0.9600 | | 0.0383 | 5.0 | 4390 | 0.1689 | 0.8083 | 0.8274 | 0.8177 | 0.9598 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3