--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14-en-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.35400516795865633 --- # whisper-tiny-minds14-en-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7195 - Wer Ortho: 0.3560 - Wer: 0.3540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.8452 | 1.79 | 50 | 0.8160 | 0.3890 | 0.3534 | | 0.3172 | 3.57 | 100 | 0.5341 | 0.3573 | 0.3547 | | 0.1191 | 5.36 | 150 | 0.5525 | 0.3284 | 0.3217 | | 0.0363 | 7.14 | 200 | 0.6061 | 0.3472 | 0.3456 | | 0.0099 | 8.93 | 250 | 0.6240 | 0.3546 | 0.3540 | | 0.0036 | 10.71 | 300 | 0.6596 | 0.3560 | 0.3527 | | 0.0019 | 12.5 | 350 | 0.6777 | 0.3513 | 0.3508 | | 0.0012 | 14.29 | 400 | 0.6946 | 0.3540 | 0.3527 | | 0.0009 | 16.07 | 450 | 0.7079 | 0.3526 | 0.3514 | | 0.0007 | 17.86 | 500 | 0.7195 | 0.3560 | 0.3540 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0