--- library_name: transformers tags: - generated_from_trainer model-index: - name: glacier_segmentation_transformer results: [] --- # glacier_segmentation_transformer This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0488 - Mean Iou: 0.9289 - Mean Accuracy: 0.9613 - Overall Accuracy: 0.9689 - Per Category Iou: [0.9484225100312303, 0.875795429449281, 0.9626254685949275] - Per Category Accuracy: [0.9725549195530643, 0.9263729934338871, 0.9850380570292713] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 100 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------------------------------------------------:|:------------------------------------------------------------:| | 0.1259 | 1.0 | 1405 | 0.0488 | 0.9289 | 0.9613 | 0.9689 | [0.9484225100312303, 0.875795429449281, 0.9626254685949275] | [0.9725549195530643, 0.9263729934338871, 0.9850380570292713] | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0