_base_ = \ './centerpoint_voxel0075_second_secfpn_head-dcn_8xb4-cyclic-20e_nus-3d.py' model = dict(test_cfg=dict(pts=dict(use_rotate_nms=True, max_num=500))) point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] # Using calibration info convert the Lidar-coordinate point cloud range to the # ego-coordinate point cloud range could bring a little promotion in nuScenes. # point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0] backend_args = None class_names = [ 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=9, use_dim=[0, 1, 2, 3, 4], pad_empty_sweeps=True, remove_close=True, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=[0.95, 1.0, 1.05], # Add double-flip augmentation flip=True, pcd_horizontal_flip=True, pcd_vertical_flip=True, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D', sync_2d=False), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range) ]), dict(type='Pack3DDetInputs', keys=['points']) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))