_base_ = [ '../_base_/datasets/nus-3d.py', '../_base_/models/centerpoint_voxel01_second_secfpn_nus.py', '../_base_/schedules/cyclic-20e.py', '../_base_/default_runtime.py' ] # If point cloud range is changed, the models should also change their point # cloud range accordingly point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] # Using calibration info convert the Lidar-coordinate point cloud range to the # ego-coordinate point cloud range could bring a little promotion in nuScenes. # point_cloud_range = [-51.2, -52, -5.0, 51.2, 50.4, 3.0] # For nuScenes we usually do 10-class detection class_names = [ 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' ] data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP') model = dict( data_preprocessor=dict( voxel_layer=dict(point_cloud_range=point_cloud_range)), pts_bbox_head=dict(bbox_coder=dict(pc_range=point_cloud_range[:2])), # model training and testing settings train_cfg=dict(pts=dict(point_cloud_range=point_cloud_range)), test_cfg=dict(pts=dict(pc_range=point_cloud_range[:2]))) dataset_type = 'NuScenesDataset' data_root = 'data/nuscenes/' backend_args = None db_sampler = dict( data_root=data_root, info_path=data_root + 'nuscenes_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict( car=5, truck=5, bus=5, trailer=5, construction_vehicle=5, traffic_cone=5, barrier=5, motorcycle=5, bicycle=5, pedestrian=5)), classes=class_names, sample_groups=dict( car=2, truck=3, construction_vehicle=7, bus=4, trailer=6, barrier=2, motorcycle=6, bicycle=6, pedestrian=2, traffic_cone=2), points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=[0, 1, 2, 3, 4], backend_args=backend_args), backend_args=backend_args) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=9, use_dim=[0, 1, 2, 3, 4], pad_empty_sweeps=True, remove_close=True, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler), dict( type='GlobalRotScaleTrans', rot_range=[-0.3925, 0.3925], scale_ratio_range=[0.95, 1.05], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=9, use_dim=[0, 1, 2, 3, 4], pad_empty_sweeps=True, remove_close=True, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range) ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( _delete_=True, batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='CBGSDataset', dataset=dict( type=dataset_type, data_root=data_root, ann_file='nuscenes_infos_train.pkl', pipeline=train_pipeline, metainfo=dict(classes=class_names), test_mode=False, data_prefix=data_prefix, use_valid_flag=True, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR', backend_args=backend_args))) test_dataloader = dict( dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names))) val_dataloader = dict( dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names))) train_cfg = dict(val_interval=20)