_base_ = './mask-rcnn_r50_fpn_1x_nuim.py' model = dict( pretrained='open-mmlab://resnext101_32x4d', backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch'))