_base_ = [ '../_base_/models/pointpillars_hv_fpn_lyft.py', '../_base_/datasets/lyft-3d.py', '../_base_/schedules/schedule-2x.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='MVXFasterRCNN', pts_backbone=dict( _delete_=True, type='NoStemRegNet', arch=dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), out_indices=(1, 2, 3), frozen_stages=-1, strides=(1, 2, 2, 2), base_channels=64, stem_channels=64, norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), norm_eval=False, style='pytorch'), pts_neck=dict(in_channels=[64, 160, 384])) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)