_base_ = [ '../_base_/models/second_hv_secfpn_waymo.py', '../_base_/datasets/waymoD5-3d-3class.py', '../_base_/schedules/schedule-2x.py', '../_base_/default_runtime.py', ] dataset_type = 'WaymoDataset' data_root = 'data/waymo/kitti_format/' class_names = ['Car', 'Pedestrian', 'Cyclist'] metainfo = dict(classes=class_names) point_cloud_range = [-76.8, -51.2, -2, 76.8, 51.2, 4] input_modality = dict(use_lidar=True, use_camera=False) backend_args = None db_sampler = dict( data_root=data_root, info_path=data_root + 'waymo_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), classes=class_names, sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10), points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=[0, 1, 2, 3, 4], backend_args=backend_args), backend_args=backend_args) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), # dict(type='ObjectSample', db_sampler=db_sampler), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='Pack3DDetInputs', keys=['points']), ]) ] train_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='waymo_infos_train.pkl', data_prefix=dict(pts='training/velodyne'), pipeline=train_pipeline, modality=input_modality, test_mode=False, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR', # load one frame every five frames load_interval=5, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(pts='training/velodyne'), ann_file='waymo_infos_val.pkl', pipeline=test_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(pts='training/velodyne'), ann_file='waymo_infos_val.pkl', pipeline=test_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR', backend_args=backend_args)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (16 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=32)