_base_ = [ '../_base_/models/pointpillars_hv_fpn_lyft.py', '../_base_/datasets/lyft-3d.py', '../_base_/schedules/schedule-2x.py', '../_base_/default_runtime.py', ] # model settings model = dict( pts_neck=dict( _delete_=True, type='SECONDFPN', norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128]), pts_bbox_head=dict( in_channels=384, feat_channels=384, anchor_generator=dict( _delete_=True, type='AlignedAnchor3DRangeGenerator', ranges=[[-80, -80, -1.0715024, 80, 80, -1.0715024], [-80, -80, -0.3033737, 80, 80, -0.3033737], [-80, -80, -0.3519405, 80, 80, -0.3519405], [-80, -80, -0.8871424, 80, 80, -0.8871424], [-80, -80, -0.6276341, 80, 80, -0.6276341], [-80, -80, -1.3220503, 80, 80, -1.3220503], [-80, -80, -1.0709302, 80, 80, -1.0709302], [-80, -80, -0.9122268, 80, 80, -0.9122268], [-80, -80, -1.8012227, 80, 80, -1.8012227]], sizes=[ [4.75, 1.92, 1.71], # car [10.24, 2.84, 3.44], # truck [12.70, 2.92, 3.42], # bus [6.52, 2.42, 2.34], # emergency vehicle [8.17, 2.75, 3.20], # other vehicle [2.35, 0.96, 1.59], # motorcycle [1.76, 0.63, 1.44], # bicycle [0.80, 0.76, 1.76], # pedestrian [0.73, 0.35, 0.50] # animal ], rotations=[0, 1.57], reshape_out=True))) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)