_base_ = [ '../_base_/models/pointpillars_hv_fpn_nus.py', '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule-2x.py', '../_base_/default_runtime.py', ] # model settings model = dict( pts_neck=dict( _delete_=True, type='SECONDFPN', norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128]), pts_bbox_head=dict( in_channels=384, feat_channels=384, anchor_generator=dict( _delete_=True, type='AlignedAnchor3DRangeGenerator', ranges=[ [-49.6, -49.6, -1.80032795, 49.6, 49.6, -1.80032795], [-49.6, -49.6, -1.74440365, 49.6, 49.6, -1.74440365], [-49.6, -49.6, -1.68526504, 49.6, 49.6, -1.68526504], [-49.6, -49.6, -1.67339111, 49.6, 49.6, -1.67339111], [-49.6, -49.6, -1.61785072, 49.6, 49.6, -1.61785072], [-49.6, -49.6, -1.80984986, 49.6, 49.6, -1.80984986], [-49.6, -49.6, -1.763965, 49.6, 49.6, -1.763965], ], sizes=[ [4.60718145, 1.95017717, 1.72270761], # car [6.73778078, 2.4560939, 2.73004906], # truck [12.01320693, 2.87427237, 3.81509561], # trailer [1.68452161, 0.60058911, 1.27192197], # bicycle [0.7256437, 0.66344886, 1.75748069], # pedestrian [0.40359262, 0.39694519, 1.06232151], # traffic_cone [0.48578221, 2.49008838, 0.98297065], # barrier ], custom_values=[0, 0], rotations=[0, 1.57], reshape_out=True))) # For nuScenes dataset, we usually evaluate the model at the end of training. # Since the models are trained by 24 epochs by default, we set evaluation # interval to be 24. Please change the interval accordingly if you do not # use a default schedule. train_cfg = dict(val_interval=24)