--- base_model: gokuls/HBERTv1_48_L4_H64_A2 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: HBERTv1_48_L4_H64_A2_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.7725 --- # HBERTv1_48_L4_H64_A2_emotion This model is a fine-tuned version of [gokuls/HBERTv1_48_L4_H64_A2](https://huggingface.co/gokuls/HBERTv1_48_L4_H64_A2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.7101 - Accuracy: 0.7725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6141 | 1.0 | 250 | 1.5167 | 0.4625 | | 1.4469 | 2.0 | 500 | 1.3688 | 0.492 | | 1.2843 | 3.0 | 750 | 1.1952 | 0.5785 | | 1.1128 | 4.0 | 1000 | 1.0349 | 0.6375 | | 0.9601 | 5.0 | 1250 | 0.9099 | 0.6835 | | 0.8528 | 6.0 | 1500 | 0.8403 | 0.726 | | 0.7793 | 7.0 | 1750 | 0.7835 | 0.74 | | 0.7291 | 8.0 | 2000 | 0.7433 | 0.7635 | | 0.6851 | 9.0 | 2250 | 0.7165 | 0.77 | | 0.6717 | 10.0 | 2500 | 0.7101 | 0.7725 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0