--- base_model: gokuls/HBERTv1_48_L4_H64_A2 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L4_H64_A2_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.32611903590752583 --- # HBERTv1_48_L4_H64_A2_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L4_H64_A2](https://huggingface.co/gokuls/HBERTv1_48_L4_H64_A2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 2.3014 - Accuracy: 0.3261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.0 | 1.0 | 180 | 3.8278 | 0.0723 | | 3.6366 | 2.0 | 360 | 3.4279 | 0.1117 | | 3.3385 | 3.0 | 540 | 3.1935 | 0.1638 | | 3.1113 | 4.0 | 720 | 2.9828 | 0.1909 | | 2.9324 | 5.0 | 900 | 2.8344 | 0.2130 | | 2.7882 | 6.0 | 1080 | 2.7100 | 0.2523 | | 2.6832 | 7.0 | 1260 | 2.6215 | 0.2774 | | 2.5965 | 8.0 | 1440 | 2.5459 | 0.2887 | | 2.5244 | 9.0 | 1620 | 2.4872 | 0.2966 | | 2.4603 | 10.0 | 1800 | 2.4261 | 0.3010 | | 2.3987 | 11.0 | 1980 | 2.3758 | 0.3153 | | 2.3615 | 12.0 | 2160 | 2.3469 | 0.3217 | | 2.3292 | 13.0 | 2340 | 2.3241 | 0.3212 | | 2.3071 | 14.0 | 2520 | 2.3100 | 0.3212 | | 2.288 | 15.0 | 2700 | 2.3014 | 0.3261 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0