--- license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert_uncased_L-4_H-256_A-4_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9285 --- # bert_uncased_L-4_H-256_A-4_emotion This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1849 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1299 | 1.0 | 250 | 0.6133 | 0.817 | | 0.4479 | 2.0 | 500 | 0.2998 | 0.9105 | | 0.2611 | 3.0 | 750 | 0.2220 | 0.92 | | 0.1968 | 4.0 | 1000 | 0.1864 | 0.9255 | | 0.1557 | 5.0 | 1250 | 0.1803 | 0.928 | | 0.1344 | 6.0 | 1500 | 0.1828 | 0.9265 | | 0.1204 | 7.0 | 1750 | 0.1849 | 0.9285 | | 0.1098 | 8.0 | 2000 | 0.1828 | 0.9225 | | 0.1005 | 9.0 | 2250 | 0.1760 | 0.9275 | | 0.0922 | 10.0 | 2500 | 0.1768 | 0.9275 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.1