--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: whisper-base-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.8066546762589928 --- # whisper-base-speech-commands This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.1307 - Accuracy: 0.8067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2604 | 1.0 | 412 | 1.0617 | 0.7977 | | 0.1168 | 2.0 | 824 | 1.0024 | 0.8017 | | 0.1527 | 3.0 | 1236 | 0.9757 | 0.8022 | | 0.0637 | 4.0 | 1648 | 1.0066 | 0.8004 | | 0.0631 | 5.0 | 2060 | 1.0504 | 0.8053 | | 0.0554 | 6.0 | 2472 | 1.1307 | 0.8067 | | 0.1075 | 7.0 | 2884 | 1.1664 | 0.8017 | | 0.021 | 8.0 | 3296 | 1.4746 | 0.8044 | | 0.0144 | 9.0 | 3708 | 1.3729 | 0.8044 | | 0.0158 | 10.0 | 4120 | 1.3561 | 0.8040 | | 0.0504 | 11.0 | 4532 | 1.3289 | 0.8053 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1