--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_20_v1_book tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_base_lda_20_v1_book_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8381999392722225 --- # bert_base_lda_20_v1_book_stsb This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_20_v1_book](https://huggingface.co/gokulsrinivasagan/bert_base_lda_20_v1_book) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6650 - Pearson: 0.8407 - Spearmanr: 0.8382 - Combined Score: 0.8394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.8738 | 1.0 | 23 | 2.4670 | 0.1765 | 0.1748 | 0.1756 | | 1.4719 | 2.0 | 46 | 1.0280 | 0.7397 | 0.7404 | 0.7401 | | 0.9801 | 3.0 | 69 | 0.8276 | 0.7956 | 0.7954 | 0.7955 | | 0.783 | 4.0 | 92 | 0.7431 | 0.8197 | 0.8193 | 0.8195 | | 0.5677 | 5.0 | 115 | 0.9075 | 0.8135 | 0.8152 | 0.8144 | | 0.4407 | 6.0 | 138 | 0.7474 | 0.8267 | 0.8272 | 0.8269 | | 0.3821 | 7.0 | 161 | 0.6753 | 0.8391 | 0.8371 | 0.8381 | | 0.3036 | 8.0 | 184 | 0.8726 | 0.8246 | 0.8260 | 0.8253 | | 0.269 | 9.0 | 207 | 0.7331 | 0.8311 | 0.8293 | 0.8302 | | 0.2191 | 10.0 | 230 | 0.7562 | 0.8383 | 0.8368 | 0.8375 | | 0.1854 | 11.0 | 253 | 0.7022 | 0.8365 | 0.8343 | 0.8354 | | 0.1718 | 12.0 | 276 | 0.6650 | 0.8407 | 0.8382 | 0.8394 | | 0.1685 | 13.0 | 299 | 0.7270 | 0.8350 | 0.8333 | 0.8342 | | 0.1368 | 14.0 | 322 | 0.7532 | 0.8392 | 0.8376 | 0.8384 | | 0.1351 | 15.0 | 345 | 0.8710 | 0.8379 | 0.8379 | 0.8379 | | 0.1459 | 16.0 | 368 | 0.7801 | 0.8416 | 0.8398 | 0.8407 | | 0.106 | 17.0 | 391 | 0.6833 | 0.8393 | 0.8380 | 0.8387 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3