--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_20_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_20_v1_book_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.4647887323943662 --- # bert_base_lda_20_v1_book_wnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_20_v1_book](https://huggingface.co/gokulsrinivasagan/bert_base_lda_20_v1_book) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7066 - Accuracy: 0.4648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.701 | 1.0 | 3 | 0.7117 | 0.4225 | | 0.6963 | 2.0 | 6 | 0.7066 | 0.4648 | | 0.6902 | 3.0 | 9 | 0.7151 | 0.4366 | | 0.6908 | 4.0 | 12 | 0.7305 | 0.3380 | | 0.6894 | 5.0 | 15 | 0.7361 | 0.2394 | | 0.689 | 6.0 | 18 | 0.7538 | 0.1972 | | 0.6867 | 7.0 | 21 | 0.7771 | 0.1972 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3