--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_base_lda_5_v1_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7107843137254902 - name: F1 type: f1 value: 0.8039867109634552 --- # bert_base_lda_5_v1_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_5_v1) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5821 - Accuracy: 0.7108 - F1: 0.8040 - Combined Score: 0.7574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6475 | 1.0 | 15 | 0.5919 | 0.6985 | 0.8099 | 0.7542 | | 0.5596 | 2.0 | 30 | 0.5821 | 0.7108 | 0.8040 | 0.7574 | | 0.4573 | 3.0 | 45 | 0.6319 | 0.6593 | 0.7549 | 0.7071 | | 0.3282 | 4.0 | 60 | 0.8021 | 0.6299 | 0.7156 | 0.6728 | | 0.1884 | 5.0 | 75 | 0.9919 | 0.6471 | 0.7517 | 0.6994 | | 0.0919 | 6.0 | 90 | 1.1951 | 0.6740 | 0.7679 | 0.7210 | | 0.0649 | 7.0 | 105 | 1.3058 | 0.6569 | 0.7595 | 0.7082 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3