--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_base_lda_5_v1_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.5611208690347649 --- # bert_base_lda_5_v1_stsb This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_5_v1) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.6191 - Pearson: 0.5646 - Spearmanr: 0.5611 - Combined Score: 0.5629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.6199 | 1.0 | 23 | 2.5334 | 0.0881 | 0.0645 | 0.0763 | | 1.9109 | 2.0 | 46 | 2.0478 | 0.3672 | 0.3623 | 0.3648 | | 1.4094 | 3.0 | 69 | 1.7320 | 0.5080 | 0.4996 | 0.5038 | | 0.9385 | 4.0 | 92 | 1.9694 | 0.5238 | 0.5276 | 0.5257 | | 0.6759 | 5.0 | 115 | 1.6464 | 0.5449 | 0.5411 | 0.5430 | | 0.5133 | 6.0 | 138 | 1.6191 | 0.5646 | 0.5611 | 0.5629 | | 0.377 | 7.0 | 161 | 1.7543 | 0.5361 | 0.5316 | 0.5339 | | 0.3223 | 8.0 | 184 | 1.6249 | 0.5752 | 0.5687 | 0.5720 | | 0.2679 | 9.0 | 207 | 1.6797 | 0.5685 | 0.5621 | 0.5653 | | 0.2156 | 10.0 | 230 | 1.6664 | 0.5592 | 0.5488 | 0.5540 | | 0.1962 | 11.0 | 253 | 1.6273 | 0.5784 | 0.5728 | 0.5756 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3