--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_100_v1_book_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7475490196078431 - name: F1 type: f1 value: 0.8303130148270182 --- # bert_tiny_lda_100_v1_book_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1_book) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5396 - Accuracy: 0.7475 - F1: 0.8303 - Combined Score: 0.7889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.62 | 1.0 | 15 | 0.5966 | 0.6740 | 0.7892 | 0.7316 | | 0.5856 | 2.0 | 30 | 0.5702 | 0.7010 | 0.8129 | 0.7569 | | 0.5467 | 3.0 | 45 | 0.5471 | 0.7279 | 0.8195 | 0.7737 | | 0.4866 | 4.0 | 60 | 0.5721 | 0.7426 | 0.8331 | 0.7879 | | 0.4174 | 5.0 | 75 | 0.5396 | 0.7475 | 0.8303 | 0.7889 | | 0.3418 | 6.0 | 90 | 0.5986 | 0.75 | 0.8211 | 0.7855 | | 0.2528 | 7.0 | 105 | 0.6746 | 0.6985 | 0.7593 | 0.7289 | | 0.1784 | 8.0 | 120 | 0.6922 | 0.7304 | 0.7925 | 0.7614 | | 0.1522 | 9.0 | 135 | 0.7651 | 0.7574 | 0.8395 | 0.7984 | | 0.1123 | 10.0 | 150 | 0.7805 | 0.7574 | 0.8308 | 0.7941 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3