--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_5_v1_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7009803921568627 - name: F1 type: f1 value: 0.8063492063492063 --- # bert_tiny_lda_5_v1_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5857 - Accuracy: 0.7010 - F1: 0.8063 - Combined Score: 0.7537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6309 | 1.0 | 15 | 0.5940 | 0.7108 | 0.8150 | 0.7629 | | 0.5923 | 2.0 | 30 | 0.5857 | 0.7010 | 0.8063 | 0.7537 | | 0.558 | 3.0 | 45 | 0.5883 | 0.6863 | 0.8006 | 0.7434 | | 0.5259 | 4.0 | 60 | 0.6008 | 0.7010 | 0.7852 | 0.7431 | | 0.456 | 5.0 | 75 | 0.6626 | 0.6716 | 0.7607 | 0.7161 | | 0.3586 | 6.0 | 90 | 0.7173 | 0.6887 | 0.7776 | 0.7332 | | 0.258 | 7.0 | 105 | 0.8888 | 0.6618 | 0.7621 | 0.7119 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3