--- library_name: transformers base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_5_v1_mrpc results: [] --- # bert_tiny_lda_5_v1_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6257 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.7698 | 1.0 | 15 | 0.6248 | 0.6838 | 0.8122 | 0.7480 | | 0.6393 | 2.0 | 30 | 0.6289 | 0.6838 | 0.8122 | 0.7480 | | 0.6303 | 3.0 | 45 | 0.6289 | 0.6838 | 0.8122 | 0.7480 | | 0.6358 | 4.0 | 60 | 0.6250 | 0.6838 | 0.8122 | 0.7480 | | 0.6315 | 5.0 | 75 | 0.6246 | 0.6838 | 0.8122 | 0.7480 | | 0.6341 | 6.0 | 90 | 0.6247 | 0.6838 | 0.8122 | 0.7480 | | 0.6305 | 7.0 | 105 | 0.6256 | 0.6838 | 0.8122 | 0.7480 | | 0.6333 | 8.0 | 120 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6276 | 9.0 | 135 | 0.6283 | 0.6838 | 0.8122 | 0.7480 | | 0.6359 | 10.0 | 150 | 0.6273 | 0.6838 | 0.8122 | 0.7480 | | 0.6349 | 11.0 | 165 | 0.6254 | 0.6838 | 0.8122 | 0.7480 | | 0.6336 | 12.0 | 180 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6305 | 13.0 | 195 | 0.6257 | 0.6838 | 0.8122 | 0.7480 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3