--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_5_v1_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8153669724770642 --- # bert_tiny_lda_5_v1_sst2 This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4397 - Accuracy: 0.8154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.402 | 1.0 | 264 | 0.4397 | 0.8154 | | 0.2385 | 2.0 | 528 | 0.4989 | 0.8039 | | 0.1813 | 3.0 | 792 | 0.5259 | 0.7970 | | 0.1449 | 4.0 | 1056 | 0.5909 | 0.8005 | | 0.1159 | 5.0 | 1320 | 0.6298 | 0.8028 | | 0.0955 | 6.0 | 1584 | 0.6731 | 0.7936 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3