--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-4_H-256_A-4_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.631768953068592 --- # bert_uncased_L-4_H-256_A-4_rte This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6545 - Accuracy: 0.6318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6982 | 1.0 | 10 | 0.6899 | 0.5451 | | 0.6864 | 2.0 | 20 | 0.6845 | 0.5523 | | 0.6733 | 3.0 | 30 | 0.6737 | 0.5884 | | 0.6495 | 4.0 | 40 | 0.6554 | 0.5884 | | 0.61 | 5.0 | 50 | 0.6573 | 0.6101 | | 0.5697 | 6.0 | 60 | 0.6545 | 0.6318 | | 0.5279 | 7.0 | 70 | 0.6648 | 0.6354 | | 0.4859 | 8.0 | 80 | 0.6778 | 0.6173 | | 0.4524 | 9.0 | 90 | 0.6933 | 0.6137 | | 0.4126 | 10.0 | 100 | 0.6992 | 0.6245 | | 0.386 | 11.0 | 110 | 0.7181 | 0.6426 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3