--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-4_H-256_A-4_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8428899082568807 --- # bert_uncased_L-4_H-256_A-4_sst2 This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3628 - Accuracy: 0.8429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4143 | 1.0 | 264 | 0.4119 | 0.8131 | | 0.2672 | 2.0 | 528 | 0.3628 | 0.8429 | | 0.2117 | 3.0 | 792 | 0.3785 | 0.8498 | | 0.1736 | 4.0 | 1056 | 0.4139 | 0.8475 | | 0.1493 | 5.0 | 1320 | 0.4231 | 0.8532 | | 0.1294 | 6.0 | 1584 | 0.4411 | 0.8544 | | 0.1159 | 7.0 | 1848 | 0.4575 | 0.8589 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3