--- license: apache-2.0 language: - mal datasets: - cis-lmu/Glot500 - oscar-corpus/OSCAR-2109 library_name: transformers pipeline_tag: text-generation tags: - goldfish - arxiv:2408.10441 --- # mal_mlym_100mb Goldfish is a suite of monolingual language models trained for 350 languages. This model is the <b>Malayalam</b> (Malayalam script) model trained on 100MB of data, after accounting for an estimated byte premium of 2.88; content-matched text in Malayalam takes on average 2.88x as many UTF-8 bytes to encode as English. The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs). Note: This language is available in Goldfish with other scripts (writing systems). See: mal_latn. Note: mal_mlym is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script mlym). All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://www.arxiv.org/abs/2408.10441). Training code and sample usage: https://github.com/tylerachang/goldfish Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing) ## Model details: To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/blob/main/model_details.json. All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences. For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)! Details for this model specifically: * Architecture: gpt2 * Parameters: 124770816 * Maximum sequence length: 512 tokens * Training text data (raw): 288.49MB * Training text data (byte premium scaled): 100.005MB * Training tokens: 24480768 (x10 epochs) * Vocabulary size: 50000 * Compute cost: 1.24942533525504e+17 FLOPs or ~11.8 NVIDIA A6000 GPU hours Training datasets (percentages prior to deduplication): * 79.43378%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AI4Bharat](https://ai4bharat.org/), [Anuvaad](https://github.com/project-anuvaad/anuvaad-parallel-corpus), [CCNet](https://github.com/facebookresearch/cc_net), [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [Indiccorp](https://ai4bharat.iitm.ac.in/corpora), [OSCAR](https://oscar-project.org/), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9), [WikiMatrix](https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix) * 20.26204%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) * 0.30417%: [eBible](https://ebible.org/find/) ## Citation If you use this model, please cite: ``` @article{chang-etal-2024-goldfish, title={Goldfish: Monolingual Language Models for 350 Languages}, author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.}, journal={Preprint}, year={2024}, url={https://www.arxiv.org/abs/2408.10441}, } ```