--- language: en thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- ## ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer to our paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). This repository contains code to pre-train ELECTRA, including small ELECTRA models on a single GPU. It also supports fine-tuning ELECTRA on downstream tasks including classification tasks (e.g,. [GLUE](https://gluebenchmark.com/)), QA tasks (e.g., [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/)), and sequence tagging tasks (e.g., [text chunking](https://www.clips.uantwerpen.be/conll2000/chunking/)). ## How to use the generator in `transformers` ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="google/electra-base-generator", tokenizer="google/electra-base-generator" ) print( fill_mask(f"HuggingFace is creating a {fill_mask.tokenizer.mask_token} that the community uses to solve NLP tasks.") ) ```