--- base_model: - arcee-ai/sec-mistral-7b-instruct-1.6-epoch - cognitivecomputations/dolphin-2.8-mistral-7b-v02 library_name: transformers tags: - code - instruct - llm - 7b - dolphin license: apache-2.0 datasets: - cognitivecomputations/dolphin language: - en --- # Dolphin Mistral Instruct This is a custom language model created using the "SLERP" method ### Models based on The following models were used to create this language model: - [arcee-ai/sec-mistral-7b-instruct-1.6-epoch](https://huggingface.co/arcee-ai/sec-mistral-7b-instruct-1.6-epoch) - [cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02) ### Configuration The following configuration was used to produce this model: ```yaml base_model: - arcee-ai/sec-mistral-7b-instruct-1.6-epoch - cognitivecomputations/dolphin-2.8-mistral-7b-v02 library_name: transformers dtype: bfloat16 ``` ## Usage This model uses SafeTensors files and can be loaded and used with the Transformers library. Here's an example of how to load and generate text with the model using Transformers and Python: ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "path/to/model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") input_text = "Write a short story about" input_ids = tokenizer.encode(input_text, return_tensors="pt").to(model.device) output_ids = model.generate( input_ids, max_length=200, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1, ) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(output_text) ``` Make sure to replace "path/to/model" with the actual path to your model's directory.