--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.1492598825428444 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.15356265356265356 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.14712316399874995 --- # wav2vec2-large-xls-r-1b-frisian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2204 - Wer: 0.1493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9606 | 2.45 | 300 | 2.6184 | 1.0 | | 1.4992 | 4.9 | 600 | 0.4233 | 0.4143 | | 0.9757 | 7.35 | 900 | 0.2765 | 0.3021 | | 0.8773 | 9.8 | 1200 | 0.2529 | 0.2528 | | 0.7448 | 12.24 | 1500 | 0.2363 | 0.2258 | | 0.7039 | 14.69 | 1800 | 0.2258 | 0.2103 | | 0.6811 | 17.14 | 2100 | 0.2217 | 0.2074 | | 0.6279 | 19.59 | 2400 | 0.2050 | 0.1915 | | 0.5938 | 22.04 | 2700 | 0.2229 | 0.1922 | | 0.6227 | 24.49 | 3000 | 0.2088 | 0.2019 | | 0.5682 | 26.94 | 3300 | 0.2127 | 0.1874 | | 0.5939 | 29.39 | 3600 | 0.2044 | 0.1789 | | 0.5427 | 31.84 | 3900 | 0.2185 | 0.1791 | | 0.5551 | 34.41 | 4200 | 0.2097 | 0.1644 | | 0.5021 | 36.86 | 4500 | 0.2180 | 0.1678 | | 0.4589 | 39.31 | 4800 | 0.2076 | 0.1581 | | 0.5204 | 41.76 | 5100 | 0.2181 | 0.1587 | | 0.512 | 44.21 | 5400 | 0.2263 | 0.1607 | | 0.465 | 46.66 | 5700 | 0.2204 | 0.1493 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3