--- library_name: transformers base_model: facebook/mbart-large-50-many-to-many-mmt tags: - generated_from_trainer datasets: - iva_mt_wslot metrics: - bleu model-index: - name: mbart-translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: iva_mt_wslot type: iva_mt_wslot config: en-pl split: validation args: en-pl metrics: - name: Bleu type: bleu value: 40.615 --- # mbart-translation This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the iva_mt_wslot dataset. It achieves the following results on the evaluation set: - Loss: 1.0132 - Bleu: 40.615 - Gen Len: 14.4961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.0632 | 1.0 | 2546 | 1.0132 | 40.615 | 14.4961 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3