--- library_name: transformers license: mit base_model: BAAI/bge-small-en-v1.5 tags: - generated_from_trainer model-index: - name: bge-small-en-v1.5-2024-12-07_11-40-21-quality-weight-0.3 results: [] --- # bge-small-en-v1.5-2024-12-07_11-40-21-quality-weight-0.3 This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0204 - Spearman: 0.9287 - Pearson: 0.9299 - Mse: 0.0204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman | Pearson | Mse | |:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:| | 0.0308 | 0.3998 | 1055 | 0.0270 | 0.9002 | 0.9029 | 0.0270 | | 0.026 | 0.7997 | 2110 | 0.0243 | 0.9100 | 0.9139 | 0.0243 | | 0.0226 | 1.1995 | 3165 | 0.0237 | 0.9153 | 0.9187 | 0.0237 | | 0.0222 | 1.5994 | 4220 | 0.0214 | 0.9218 | 0.9243 | 0.0214 | | 0.0202 | 1.9992 | 5275 | 0.0217 | 0.9228 | 0.9265 | 0.0217 | | 0.0175 | 2.3991 | 6330 | 0.0209 | 0.9235 | 0.9282 | 0.0209 | | 0.0163 | 2.7989 | 7385 | 0.0202 | 0.9258 | 0.9299 | 0.0202 | | 0.0127 | 3.1988 | 8440 | 0.0204 | 0.9268 | 0.9291 | 0.0204 | | 0.0137 | 3.5986 | 9495 | 0.0201 | 0.9279 | 0.9308 | 0.0201 | | 0.0142 | 3.9985 | 10550 | 0.0199 | 0.9278 | 0.9310 | 0.0199 | | 0.0106 | 4.3983 | 11605 | 0.0202 | 0.9280 | 0.9309 | 0.0202 | | 0.012 | 4.7982 | 12660 | 0.0202 | 0.9282 | 0.9310 | 0.0202 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 2.19.2 - Tokenizers 0.20.3