--- license: apache-2.0 language: - en library_name: transformers inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico tags: - gpt - llm - large language model - open-source datasets: - h2oai/openassistant_oasst1 --- # h2oGPT Model Card ## Summary H2O.ai's `h2ogpt-oasst1-512-20b` is a 20 billion parameter instruction-following large language model licensed for commercial use. - Base model: [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) - Fine-tuning dataset: [h2oai/openassistant_oasst1](https://huggingface.co/datasets/h2oai/openassistant_oasst1) - Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt) - Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oasst1-512-20b/blob/main/gpt-neox-20b.openassistant_oasst1.json.6.0_epochs.5a14ea8b3794c0d60476fc262d0a297f98dd712d.1013.zip) ## Chatbot - Run your own chatbot: [H2O.ai Github](https://github.com/h2oai/h2ogpt) ![Chatbot](https://user-images.githubusercontent.com/6147661/232924684-6c0e2dfb-2f24-4098-848a-c3e4396f29f6.mov) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed. ```bash pip install transformers==4.28.1 pip install accelerate==0.18.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-20b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"]) ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oasst1-512-20b/blob/main/h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-20b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-20b", torch_dtype=torch.bfloat16, device_map="auto") generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"]) ``` ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50432, 6144) (layers): ModuleList( (0-43): 44 x GPTNeoXLayer( (input_layernorm): LayerNorm((6144,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((6144,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=6144, out_features=18432, bias=True) (dense): Linear(in_features=6144, out_features=6144, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=6144, out_features=24576, bias=True) (dense_4h_to_h): Linear(in_features=24576, out_features=6144, bias=True) (act): FastGELUActivation() ) ) ) (final_layer_norm): LayerNorm((6144,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=6144, out_features=50432, bias=False) ) ``` ## Model Configuration ```json GPTNeoXConfig { "_name_or_path": "h2oai/h2ogpt-oasst1-512-20b", "architectures": [ "GPTNeoXForCausalLM" ], "attention_probs_dropout_prob": 0, "bos_token_id": 0, "custom_pipelines": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "eos_token_id": 0, "hidden_act": "gelu_fast", "hidden_dropout_prob": 0, "hidden_size": 6144, "initializer_range": 0.02, "intermediate_size": 24576, "layer_norm_eps": 1e-05, "max_position_embeddings": 2048, "model_type": "gpt_neox", "num_attention_heads": 64, "num_hidden_layers": 44, "rotary_emb_base": 10000, "rotary_pct": 0.25, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.28.1", "use_cache": true, "use_parallel_residual": true, "vocab_size": 50432 } ```