--- language: - en license: apache-2.0 datasets: - OpenAssistant/oasst_top1_2023-08-25 pipeline_tag: text-generation model-index: - name: tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 32.85 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 58.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 38.35 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 57.7 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1 name: Open LLM Leaderboard --- TinyLlama-1.1B-intermediate-step-715k-1.5T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset. SFT code: https://github.com/jzhang38/TinyLlama/tree/main/sft Evaluation Results at: https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1_public/blob/main/results_2023-11-23T17-25-53.937618.json Command used: ```bash accelerate launch finetune.py \ --model_name_or_path TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T \ --output_dir ./output/1_5T_FT_lr1e-5_ep5_top1_2023-08-25 \ --logging_steps 10 \ --save_strategy epoch \ --data_seed 42 \ --save_total_limit 2 \ --evaluation_strategy epoch \ --eval_dataset_size 512 \ --max_eval_samples 1000 \ --per_device_eval_batch_size 1 \ --max_new_tokens 32 \ --dataloader_num_workers 3 \ --group_by_length=False \ --logging_strategy steps \ --remove_unused_columns False \ --do_train \ --do_eval \ --warmup_ratio 0.05 \ --lr_scheduler_type constant \ --dataset OpenAssistant/oasst_top1_2023-08-25 \ --dataset_format oasst1 \ --source_max_len 1 \ --target_max_len 1023 \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --max_steps 0 \ --num_train_epochs 5 \ --learning_rate 1e-5 \ --adam_beta2 0.999 \ --max_grad_norm 1.0 \ --weight_decay 0.0 \ --seed 0 \ --trust_remote_code ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |35.58| |AI2 Reasoning Challenge (25-Shot)|32.85| |HellaSwag (10-Shot) |58.16| |MMLU (5-Shot) |25.96| |TruthfulQA (0-shot) |38.35| |Winogrande (5-shot) |57.70| |GSM8k (5-shot) | 0.45|