---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Net cash used in financing activities in 2023 was $2,430 million.
sentences:
- What criteria does Airbnb, Inc. use to assess if an available-for-sale security
should be recorded as impaired on their financial statements?
- What was the total amount of net cash used in financing activities in 2023?
- How much did Visa authorize for its share repurchase program in October 2023?
- source_sentence: Microsoft® and Windows® are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.
sentences:
- Where does Eli Lilly and Company manufacture and distribute its products?
- What is the significance of Microsoft® and Windows® in relation to Microsoft Corporation?
- What percentage of total net revenue did the Americas region contribute in 2023?
- source_sentence: We make available free of charge on the Investor Relations section
of our corporate website all of the reports we file with or furnish to the SEC
as soon as reasonably practicable, after the reports are filed or furnished.
sentences:
- Is there a cost to access reports filed by Intuit Inc. with the SEC?
- What amount of cash, cash equivalents, and restricted cash did the company have
at the end of the period?
- Where in IBM’s 2023 Form 10-K can the Financial Statement Schedule be found?
- source_sentence: The U.S. Automobile Information and Disclosure Act also requires
manufacturers of motor vehicles to disclose certain information regarding the
manufacturer’s suggested retail price, optional equipment and pricing.
sentences:
- What does the Adjusted Effective Tax Rate measure exclude?
- What was the fair value of the total consideration transferred for the acquisition
discussed, and how was it composed?
- Which act requires U.S. automobile manufacturers to disclose certain pricing and
equipment information?
- source_sentence: Under the Insurance Act, Chubb's Bermuda domiciled subsidiaries
are prohibited from declaring or paying any dividends of more than 25 percent
of total statutory capital and surplus, as shown in its previous financial year
statutory balance sheet, unless at least seven days before payment of the dividends,
it files with the BMA an affidavit signed by at least two directors of the relevant
Bermuda domiciled subsidiary (one of whom must be a director resident in Bermuda)
and by the relevant Bermuda domiciled subsidiary’s principal representative, that
it will continue to meet its required solvency margins. Furthermore, Bermuda domiciled
subsidiaries may only declare and pay a dividend from retained earnings and a
dividend or distribution from contributed surplus if it has no reasonable grounds
for believing that it is, or would after the payment be, unable to pay its liabilities
as they become due, or if the realizable value of its assets would be less than
the aggregate of its liabilities. In addition, Chubb's Bermuda domiciled subsidiaries
must obtain the BMA's prior approval before reducing total statutory capital,
as shown in its previous financial year's financial statements, by 15 percent
or more.
sentences:
- What are the restrictions and requirements for Bermuda domiciled subsidiaries
regarding the distribution of dividends under the Insurance Act?
- What section deals with financial statements and supplementary data?
- What measures has the company implemented to ensure workplace safety?
pipeline_tag: sentence-similarity
model-index:
- name: BGE small Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7042857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7042857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28190476190476194
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7042857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8153543862763872
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7803667800453513
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7829122109320609
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8471428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28238095238095234
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17371428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8471428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.815124112835889
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7802040816326532
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7828080021041772
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8385714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8757142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9228571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27952380952380956
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17514285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09228571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8385714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8757142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9228571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.815223056195625
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7808248299319727
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7833488292208493
name: Cosine Map@100
---
# BGE small Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("haophancs/bge-base-financial-matryoshka")
# Run inference
sentences = [
"Under the Insurance Act, Chubb's Bermuda domiciled subsidiaries are prohibited from declaring or paying any dividends of more than 25 percent of total statutory capital and surplus, as shown in its previous financial year statutory balance sheet, unless at least seven days before payment of the dividends, it files with the BMA an affidavit signed by at least two directors of the relevant Bermuda domiciled subsidiary (one of whom must be a director resident in Bermuda) and by the relevant Bermuda domiciled subsidiary’s principal representative, that it will continue to meet its required solvency margins. Furthermore, Bermuda domiciled subsidiaries may only declare and pay a dividend from retained earnings and a dividend or distribution from contributed surplus if it has no reasonable grounds for believing that it is, or would after the payment be, unable to pay its liabilities as they become due, or if the realizable value of its assets would be less than the aggregate of its liabilities. In addition, Chubb's Bermuda domiciled subsidiaries must obtain the BMA's prior approval before reducing total statutory capital, as shown in its previous financial year's financial statements, by 15 percent or more.",
'What are the restrictions and requirements for Bermuda domiciled subsidiaries regarding the distribution of dividends under the Insurance Act?',
'What section deals with financial statements and supplementary data?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7043 |
| cosine_accuracy@3 | 0.8457 |
| cosine_accuracy@5 | 0.88 |
| cosine_accuracy@10 | 0.9243 |
| cosine_precision@1 | 0.7043 |
| cosine_precision@3 | 0.2819 |
| cosine_precision@5 | 0.176 |
| cosine_precision@10 | 0.0924 |
| cosine_recall@1 | 0.7043 |
| cosine_recall@3 | 0.8457 |
| cosine_recall@5 | 0.88 |
| cosine_recall@10 | 0.9243 |
| cosine_ndcg@10 | 0.8154 |
| cosine_mrr@10 | 0.7804 |
| **cosine_map@100** | **0.7829** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7057 |
| cosine_accuracy@3 | 0.8471 |
| cosine_accuracy@5 | 0.8686 |
| cosine_accuracy@10 | 0.9243 |
| cosine_precision@1 | 0.7057 |
| cosine_precision@3 | 0.2824 |
| cosine_precision@5 | 0.1737 |
| cosine_precision@10 | 0.0924 |
| cosine_recall@1 | 0.7057 |
| cosine_recall@3 | 0.8471 |
| cosine_recall@5 | 0.8686 |
| cosine_recall@10 | 0.9243 |
| cosine_ndcg@10 | 0.8151 |
| cosine_mrr@10 | 0.7802 |
| **cosine_map@100** | **0.7828** |
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7071 |
| cosine_accuracy@3 | 0.8386 |
| cosine_accuracy@5 | 0.8757 |
| cosine_accuracy@10 | 0.9229 |
| cosine_precision@1 | 0.7071 |
| cosine_precision@3 | 0.2795 |
| cosine_precision@5 | 0.1751 |
| cosine_precision@10 | 0.0923 |
| cosine_recall@1 | 0.7071 |
| cosine_recall@3 | 0.8386 |
| cosine_recall@5 | 0.8757 |
| cosine_recall@10 | 0.9229 |
| cosine_ndcg@10 | 0.8152 |
| cosine_mrr@10 | 0.7808 |
| **cosine_map@100** | **0.7833** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
In 2023, $2.2 billion or 5% was primarily related to patient co-pay assistance, cash discounts for prompt payment, distributor fees, and sales return provisions.
| What was the amount of sales return provisions in 2023 as part of gross-to-net deductions?
|
| Cash and cash equivalents were $21.9 billion at the end of 2023 as compared to $14.1 billion at the end of 2022, showing a $7.8 billion increase.
| How much did cash and cash equivalents increase by the end of 2023 compared to the end of 2022?
|
| The net increase in cash and cash equivalents for UnitedHealthcare in 2023 compared to 2022 was $72 million.
| What was the net increase in cash and cash equivalents for UnitedHealthcare in 2023 compared to 2022?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
384
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters