--- license: apache-2.0 tags: - generated_from_trainer datasets: - ingredients_yes_no metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ingredients results: - task: name: Token Classification type: token-classification dataset: name: ingredients_yes_no type: ingredients_yes_no args: IngredientsYesNo metrics: - name: Precision type: precision value: 0.9898648648648649 - name: Recall type: recall value: 0.9932203389830508 - name: F1 type: f1 value: 0.9915397631133671 - name: Accuracy type: accuracy value: 0.9978308026030369 --- # distilbert-base-uncased-finetuned-ingredients This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset. It achieves the following results on the evaluation set: - Loss: 0.0105 - Precision: 0.9899 - Recall: 0.9932 - F1: 0.9915 - Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 47 | 0.2783 | 0.4 | 0.5492 | 0.4629 | 0.8910 | | No log | 2.0 | 94 | 0.1089 | 0.8145 | 0.8780 | 0.8450 | 0.9718 | | No log | 3.0 | 141 | 0.0273 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 4.0 | 188 | 0.0168 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 5.0 | 235 | 0.0156 | 0.9865 | 0.9898 | 0.9882 | 0.9957 | | No log | 6.0 | 282 | 0.0129 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 7.0 | 329 | 0.0121 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 8.0 | 376 | 0.0115 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 9.0 | 423 | 0.0108 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 10.0 | 470 | 0.0105 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3