--- license: apache-2.0 tags: - generated_from_trainer datasets: - speech_commands metrics: - wer model-index: - name: whisper-small-Eng-1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: speech_commands type: speech_commands config: v0.01 split: test args: v0.01 metrics: - name: Wer type: wer value: 239.6 --- # whisper-small-Eng-1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 5.0620 - Wer: 239.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 7.156 | 0.01 | 5 | 6.9727 | 256.4 | | 7.5392 | 0.02 | 10 | 5.0620 | 239.6 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3