--- language: "nl" tags: - bert - sarcasm-detection - text-classification widget: - text: "We deden een man een nacht in een vat met cola en nu is hij dood" --- # Dutch Sarcasm Detector Dutch Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) and the training data consists of ready-made dataset available on Kaggle as well as scraped data from Dutch sarcastic newspaper (De Speld). Labels: 0 -> Not Sarcastic; 1 -> Sarcastic ## Source Data Datasets: - Dutch non-sarcastic data: [Kaggle: Dutch News Articles](https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles) Scraped data: - Dutch sarcastic news from [De Speld](https://speld.nl) ## Training Dataset - [helinivan/sarcasm_headlines_multilingual](https://huggingface.co/datasets/helinivan/sarcasm_headlines_multilingual) ## Codebase: - Git Repo: [Official repository](https://github.com/helinivan/multilingual-sarcasm-detector) --- ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import string def preprocess_data(text: str) -> str: return text.lower().translate(str.maketrans("", "", string.punctuation)).strip() MODEL_PATH = "helinivan/dutch-sarcasm-detector" tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH) text = "We deden een man een nacht in een vat met cola en nu is hij dood" tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=256, return_tensors="pt") output = model(**tokenized_text) probs = output.logits.softmax(dim=-1).tolist()[0] confidence = max(probs) prediction = probs.index(confidence) results = {"is_sarcastic": prediction, "confidence": confidence} ``` Output: ``` {'is_sarcastic': 1, 'confidence': 0.8915400505065918} ``` ## Performance | Model-Name | F1 | Precision | Recall | Accuracy | ------------- |:-------------| -----| -----| ----| | [helinivan/english-sarcasm-detector ](https://huggingface.co/helinivan/english-sarcasm-detector)| 92.38 | 92.75 | 92.38 | 92.42 | [helinivan/italian-sarcasm-detector ](https://huggingface.co/helinivan/italian-sarcasm-detector) | 88.26 | 87.66 | 89.66 | 88.69 | [helinivan/multilingual-sarcasm-detector ](https://huggingface.co/helinivan/multilingual-sarcasm-detector) | 87.23 | 88.65 | 86.33 | 88.30 | [helinivan/dutch-sarcasm-detector ](https://huggingface.co/helinivan/dutch-sarcasm-detector) | **83.02** | 84.27 | 82.01 | 86.81