--- license: mit language: - zh pipeline_tag: sentence-similarity --- ## Model List The evaluation dataset is in Chinese, and we used the same language model **RoBERTa base** on different methods. In addition, considering that the test set of some datasets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the **weighted average (w-avg)** method. | Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. | |:-----------------------:|:------------:|:-----------:|:----------|:-------------|:------------:|:----------:| | BERT-Whitening | 65.27| -| -| -| -| -| | SimBERT | 70.01| -| -| -| -| -| | SBERT-Whitening | 71.75| -| -| -| -| -| | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 78.61| -| -| -| -| -| | [hellonlp/simcse-base-zh](https://huggingface.co/hellonlp/simcse-roberta-base-zh) | 80.96| -| -| -| -| -| | [hellonlp/promcse-base-zh-v1.0](https://huggingface.co/hellonlp/promcse-bert-base-zh) | **81.57**| -| -| -| -| -| | [hellonlp/promcse-base-zh-v1.1](https://huggingface.co/hellonlp/promcse-bert-base-zh) | **82.02**| -| -| -| -| -| ## Uses To use the tool, first install the `promcse` package from [PyPI](https://pypi.org/project/promcse/) ```bash pip install promcse ``` After installing the package, you can load our model by two lines of code ```python from promcse import PromCSE model = PromCSE("hellonlp/promcse-bert-base-zh-v1.1", "cls", 10) ``` Then you can use our model for encoding sentences into embeddings ```python embeddings = model.encode("武汉是一个美丽的城市。") print(embeddings.shape) #torch.Size([768]) ``` Compute the cosine similarities between two groups of sentences ```python sentences_a = ['你好吗'] sentences_b = ['你怎么样','我吃了一个苹果','你过的好吗','你还好吗','你', '你好不好','你好不好呢','我不开心','我好开心啊', '你吃饭了吗', '你好吗','你现在好吗','你好个鬼'] similarities = model.similarity(sentences_a, sentences_b) print(similarities) # [(1.0, '你好吗'), # (0.9029, '你好不好'), # (0.8945, '你好不好呢'), # (0.8478, '你还好吗'), # (0.7746, '你现在好吗'), # (0.7607, '你过的好吗'), # (0.7399, '你怎么样'), # (0.5967, '你'), # (0.5395, '你好个鬼'), # (0.5262, '你吃饭了吗'), # (0.3608, '我好开心啊'), # (0.2308, '我不开心'), # (0.0626, '我吃了一个苹果')] ```