--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.45 pipeline_tag: image-classification --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4084 - Accuracy: 0.45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8332 | 0.3375 | | No log | 2.0 | 80 | 1.5977 | 0.3438 | | No log | 3.0 | 120 | 1.4988 | 0.45 | | No log | 4.0 | 160 | 1.4639 | 0.4437 | | No log | 5.0 | 200 | 1.4292 | 0.4188 | | No log | 6.0 | 240 | 1.4092 | 0.4625 | | No log | 7.0 | 280 | 1.3667 | 0.45 | | No log | 8.0 | 320 | 1.3967 | 0.4313 | | No log | 9.0 | 360 | 1.3820 | 0.5062 | | No log | 10.0 | 400 | 1.3740 | 0.4938 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3