--- license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: indobert-finetuned-sentiment-happiness-index results: [] widget: - text: Aku suka makan bakso example_title: Sentiment Analysis language: - id pipeline_tag: text-classification --- # indobert-finetuned-sentiment-happiness-index This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an own private dataset. It achieves the following results on the evaluation set: - Loss: 1.4094 - Accuracy: 0.8048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 270 | 0.5214 | 0.7900 | | 0.5321 | 2.0 | 540 | 0.6425 | 0.7475 | | 0.5321 | 3.0 | 810 | 0.7702 | 0.7835 | | 0.1711 | 4.0 | 1080 | 1.0106 | 0.7937 | | 0.1711 | 5.0 | 1350 | 1.2141 | 0.7891 | | 0.0508 | 6.0 | 1620 | 1.3340 | 0.7965 | | 0.0508 | 7.0 | 1890 | 1.3483 | 0.8030 | | 0.0133 | 8.0 | 2160 | 1.3591 | 0.8085 | | 0.0133 | 9.0 | 2430 | 1.4149 | 0.8057 | | 0.0055 | 10.0 | 2700 | 1.4094 | 0.8048 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3