--- library_name: peft license: apache-2.0 datasets: - Abirate/english_quotes language: - en pipeline_tag: text-generation tags: - text-generation-inference --- # hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in-4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ## Model description This model is a fine-tuned version of the `EleutherAI/gpt-neox-20b` model using the QLoRa library and the PEFT library. #### How to use The code below performs the following steps: 1. Imports the necessary libraries: `torch` and classes from the `transformers` library. 2. Specifies the `model_id` as "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset". 3. Defines a `BitsAndBytesConfig` object named `bnb_config` with the following configuration: - `load_in_4bit` set to `True` - `bnb_4bit_use_double_quant` set to `True` - `bnb_4bit_quant_type` set to "nf4" - `bnb_4bit_compute_dtype` set to `torch.bfloat16` 4. Initializes an `AutoTokenizer` object named `tokenizer` by loading the tokenizer for the specified `model_id`. 5. Initializes an `AutoModelForCausalLM` object named `model` by loading the pre-trained model for the specified `model_id` and providing the `quantization_config` as `bnb_config`. The model is loaded on device `cuda:0`. 6. Defines a variable `text` with the value "Twenty years from now". 7. Defines a variable `device` with the value "cuda:0", representing the device on which the model will be executed. 8. Encodes the `text` using the `tokenizer` and converts it to a PyTorch tensor, assigning it to the `inputs` variable. The tensor is moved to the specified `device`. 9. Generates text using the `model.generate` method by passing the `inputs` tensor and setting the `max_new_tokens` parameter to 20. The generated output is assigned to the `outputs` variable. 10. Decodes the `outputs` tensor using the `tokenizer` to obtain the generated text without special tokens, and assigns it to the `generated_text` variable. 11. Prints the `generated_text`. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig model_id = "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}) text = "Twenty years from now" device = "cuda:0" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=20) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` ### Framework versions - PEFT 0.4.0.dev0 ## Training procedure - Trainable params: 8650752 - all params: 10597552128 - trainable%: 0.08162971878329976 ## License This model is licensed under Apache 2.0. Please see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for more information.